
Week 8 - Wednesday

 What did we talk about last time?
 Practice with dynamic allocation and random numbers
 GDB
 Started structs

Good design adds value faster than it adds cost.

Thomas C. Gale

 What if you have a number and want a string version of it?
 In Java:

 What if you have a string that gives a numerical representation and you
want the number it represents?
 In Java:

int x = 3047;
String value = "" + x; // Quick way
value = Integer.toString(x); // Fussy way

String value = "3047";
int x = Integer.parseInt(value);

 In C, the standard way to convert a string to an int is the
atoi() function
 #include <stdlib.h> to use it

#include <stdlib.h>
#include <stdio.h>

int main()
{

char* value = "3047";
int x = atoi(value);
printf("%d\n", x);
return 0;

}

 Now it's our turn to implement atoi()
 Signature:

int atoi(char* number);

 Oddly enough, this is a stranger situation
 The portable way to do this is to use sprintf()
 It's like printf() except that it prints things to a string

buffer instead of the screen

char value[12]; // Has to be big enough
int x = 3047;
sprintf (value, "%d", x);

 A struct in C is:
 A collection of one or more variables
 Possibly of different types
 Grouped together for convenient handling.

 They were called records in Pascal
 They have similarities to classes in Java
 Except all fields are public and there are no methods

 Struct declarations are usually global
 They are outside of main() and often in header files

struct name
{

type1 member1;
type2 member2;
type3 member3;
...

};

 In Java, a struct-like class would be used to group some data
conveniently

 Examples:

public class Point
{

private double x;
private double y;
// Constructor
// Methods

}

public class Student
{

private String name;
private double GPA;
private int ID;
// Constructor
// Methods

}

A class to hold a point in space A class to hold student data

 The C equivalents are similar
 Just remember to put a semicolon after the struct declaration

 A string can either be a char* (the memory for it is allocated elsewhere)
or a char array with a maximum size

 Examples:

struct point
{

double x;
double y;

};

struct student
{

char name[100];
double GPA;
int ID;

};

A struct to hold a point in space A struct to hold student data

 Type:
 struct
 The name of the struct
 The name of the identifier

 You have to put struct first!

struct student bob;
struct student jameel;
struct point start;
struct point end;

 Once you have a struct variable, you can access its members
with dot notation (variable.member)
 Members can be read and written

struct student bob;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
printf("Bob's GPA: %f\n", bob.GPA);

 There are no constructors for structs in C
 You can initialize each element manually:

 Or you can use braces to initialize the entire struct at once:

struct student julio;
strcpy(julio.name, "Julio Iglesias");
julio.GPA = 3.9;
julio.ID = 100009;

struct student julio = { "Julio Iglesias", 3.9, 100009 };

 It is possible to assign one struct to another

 Doing so is equivalent to using memcpy() to copy the memory of julio
into the memory of bob

 bob is still separate memory: it's not like copying references in Java

struct student julio;
struct student bob;
strcpy(julio.name, "Julio Iglesias");
julio.GPA = 3.9;
julio.ID = 100009;
bob = julio;

 It is perfectly legal to put arrays of values, pointers, and even other
struct variables inside of a struct declaration

 If it's a pointer, you will have to point it to valid memory yourself

struct point
{

double x;
double y;

};

struct triangle
{

struct point vertices[3];

};

 With a pointer in a struct, copying the struct will copy the pointer but will not make a copy
of the contents

 Changing one struct could change another

bob1.firstName = strdup("Bob");
bob1.lastName = strdup("Newhart");
bob2 = bob1;
strcpy(bob2.lastName, "Hope");
printf("Name: %s %s\n", bob1.firstName, bob1.lastName);
// Prints Bob Hope

struct person
{

char* firstName;
char* lastName;

};
struct person bob1;
struct person bob2;

 An array of structs is common
 Student roster
 List of points

 Like any other array, you put the name of the type (struct
name) before the variable, followed by brackets with a fixed size

 An array of structs is filled with uninitialized structs whose
members are garbage

struct student students[100];

 Similarly, we can define a pointer to a struct variable
 We can point it at an existing struct
 We can dynamically allocate a struct to point it at
 This is how linked lists are going to work

struct student bob;
struct student* studentPointer;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
studentPointer = &bob;
(*studentPointer).GPA = 2.8;
studentPointer = (struct student*)malloc(sizeof(struct
student));

 As we saw on the previous slide, we have to dereference a struct
pointer and then use the dot to access a member

 This is cumbersome and requires parentheses
 Because this is a frequent operation, dereference + dot can be

written as an arrow (->)

struct student* studentPointer = (struct student*)
malloc(sizeof(struct student));

(*studentPointer).ID = 3030;

studentPointer->ID = 3030;

 If you pass a struct directly to a function, you are passing it by
value
 A copy of its contents is made

 It is common to pass a struct by pointer to avoid copying and
so that its members can be changed

void flip(struct point* value)
{

double temp = value->x;
value->x = value->y;
value->y = temp;

}

 Always put a semicolon at the end of a struct declaration
 Don't put constructors or methods inside of a struct
 C doesn't have them

 Assigning one struct to another copies the memory of one
into the other

 Pointers to struct variables are usually passed into functions
 Both for efficiency and so that you can change the data inside

 Write a function that takes two point structs and returns the
distance between them

struct point
{

double x;
double y;

};

 Read in 100 student names, GPAs, and ID numbers
 Sort them by ID numbers
 Print out the values

struct student
{

char name[100];
double GPA;
int ID;

};

 typedef
 Linked lists

 Keep working on Project 4
 Due the Friday after Spring Break

	COMP 2400
	Last time
	Questions?
	Project 4
	Quotes
	Some String Issues
	A few string issues
	String to integer
	Implementing atoi()
	Integer to string
	Back to Structs
	Structs
	Anatomy of a struct
	Java examples
	C examples
	Declaring a struct variable
	Accessing members of a struct
	Initializing structs
	Assigning structs
	Putting arrays and pointers in structs
	Dangers with pointers in structs
	Using arrays of structs
	Pointers to structs
	Arrow notation
	Passing structs to functions
	Gotchas
	Example
	Example
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

