
Week 8 - Wednesday



 What did we talk about last time?
 Practice with dynamic allocation and random numbers
 GDB
 Started structs







Good design adds value faster than it adds cost.

Thomas C. Gale





 What if you have a number and want a string version of it?
 In Java:

 What if you have a string that gives a numerical representation and you 
want the number it represents?
 In Java:

int x = 3047;
String value = "" + x; // Quick way
value = Integer.toString(x); // Fussy way

String value = "3047";
int x = Integer.parseInt(value);



 In C, the standard way to convert a string to an int is the 
atoi() function
 #include <stdlib.h> to use it

#include <stdlib.h>
#include <stdio.h>

int main()
{

char* value = "3047";
int x = atoi(value);
printf("%d\n", x);
return 0;

}



 Now it's our turn to implement atoi()
 Signature:

int atoi(char* number);



 Oddly enough, this is a stranger situation
 The portable way to do this is to use sprintf()
 It's like printf() except that it prints things to a string 

buffer instead of the screen

char value[12];  // Has to be big enough
int x = 3047;
sprintf (value, "%d", x );





 A struct in C is:
 A collection of one or more variables
 Possibly of  different types
 Grouped together for convenient  handling.  

 They were called records in Pascal
 They have similarities to classes in Java
 Except all fields are public and there are no methods

 Struct declarations are usually global
 They are outside of main() and often in header files



struct name
{ 

type1 member1;
type2 member2;
type3 member3;
...

};



 In Java, a struct-like class would be used to group some data 
conveniently

 Examples:

public class Point 
{

private double x;
private double y;
// Constructor
// Methods

}

public class Student
{

private String name;
private double GPA;
private int ID;
// Constructor
// Methods

}

A class to hold a point in space A class to hold student data



 The C equivalents are similar
 Just remember to put a semicolon after the struct declaration

 A string can either be a char* (the memory for it is allocated elsewhere) 
or a char array with a maximum size

 Examples:

struct point 
{

double x;
double y;

};

struct student
{

char name[100];
double GPA;
int ID;

};

A struct to hold a point in space A struct to hold student data



 Type:
 struct
 The name of the struct
 The name of the identifier

 You have to put struct first!

struct student bob;
struct student jameel;
struct point start;
struct point end;



 Once you have a struct variable, you can access its members 
with dot notation (variable.member)
 Members can be read and written

struct student bob;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
printf("Bob's GPA: %f\n", bob.GPA);



 There are no constructors for structs in C
 You can initialize each element manually:

 Or you can use braces to initialize the entire struct at once:

struct student julio;
strcpy(julio.name, "Julio Iglesias");
julio.GPA = 3.9;
julio.ID = 100009;

struct student julio = { "Julio Iglesias", 3.9, 100009 };



 It is possible to assign one struct to another

 Doing so is equivalent to using memcpy() to copy the memory of julio
into the memory of bob

 bob is still separate memory: it's not like copying references in Java

struct student julio;
struct student bob;
strcpy(julio.name, "Julio Iglesias");
julio.GPA = 3.9;
julio.ID = 100009;
bob = julio;



 It is perfectly legal to put arrays of values, pointers, and even other 
struct variables inside of a struct declaration

 If it's a pointer, you will have to point it to valid memory yourself

struct point
{

double x;
double y;

};

struct triangle
{

struct point vertices[3];

};



 With a pointer in a struct, copying the struct will copy the pointer but will not make a copy 
of the contents

 Changing one struct could change another

bob1.firstName = strdup("Bob");
bob1.lastName = strdup("Newhart");
bob2 = bob1;
strcpy(bob2.lastName, "Hope");
printf("Name: %s %s\n", bob1.firstName, bob1.lastName);
// Prints Bob Hope

struct person
{

char* firstName;
char* lastName;

};
struct person bob1;
struct person bob2;



 An array of structs is common
 Student roster
 List of points

 Like any other array, you put the name of the type (struct
name) before the variable, followed by brackets with a fixed size

 An array of structs is filled with uninitialized structs whose 
members are garbage

struct student students[100];



 Similarly, we can define a pointer to a struct variable
 We can point it at an existing struct
 We can dynamically allocate a struct to point it at
 This is how linked lists are going to work

struct student bob;
struct student* studentPointer;
strcpy(bob.name, "Bob Blobberwob");
bob.GPA = 3.7;
bob.ID = 100008;
studentPointer = &bob;
(*studentPointer).GPA = 2.8;
studentPointer = (struct student*)malloc(sizeof(struct
student));



 As we saw on the previous slide, we have to dereference a struct
pointer and then use the dot to access a member

 This is cumbersome and requires parentheses
 Because this is a frequent operation, dereference + dot can be 

written as an arrow (->)

struct student* studentPointer = (struct student*) 
malloc(sizeof(struct student));

(*studentPointer).ID = 3030;

studentPointer->ID = 3030;



 If you pass a struct directly to a function, you are passing it by 
value
 A copy of its contents is made

 It is common to pass a struct by pointer to avoid copying and 
so that its members can be changed

void flip(struct point* value)
{

double temp = value->x;
value->x = value->y;
value->y = temp;

}



 Always put a semicolon at the end of a struct declaration
 Don't put constructors or methods inside of a struct
 C doesn't have them

 Assigning one struct to another copies the memory of one 
into the other

 Pointers to struct variables are usually passed into functions
 Both for efficiency and so that you can change the data inside



 Write a function that takes two point structs and returns the 
distance between them

struct point
{

double x;
double y;

};



 Read in 100 student names, GPAs, and ID numbers
 Sort them by ID numbers
 Print out the values

struct student
{

char name[100];
double GPA;
int ID;

};







 typedef
 Linked lists



 Keep working on Project 4
 Due the Friday after Spring Break
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